
OhMyDB!
CS 739 P2 Project Report

Raft Vs Prolonged Network Partitions
Aditya Jain, Hayden Coffey, and Tzu-Tao Chang

While there weren’t any outstanding questions during the presentation, there was some
discussion on the case of Raft coping up with a prolonged network partition which we had
simulated using OhMyDB’s fault injection features. In this report, we explore the problem in
more detail and attempt to come up with a mathematical model.

[1] Overview
Let us consider the case when the network gets partitioned into two partitions. We can denote
such a network partition as where is the number of nodes in the larger (majority)
partition and be the number of nodes in the smaller (minority) partition.

There can be two cases as shown in the figure below.

In Case A, the old leader ends up in the
minority partition which makes the majority
elect a new leader while the old leader
continues to believe it is the leader in the
minority partition. Upon reconnection, the
majority leader causes the minority leader to
step down. No new elections take place in
this case.

Interesting things happen in Case B, though.
Here, the leader stays in the majority
partition and continues to work normally.
However, the minority is left without a leader
and it keeps trying to elect a new leader
thereby driving its term up dramatically.

Let us assume that the partition lasts long
enough such that the minority’s term ends
up being significantly higher than the
majority’s term. In such a case, upon
reconnection, the minority makes the majority leader step down. Secondly, the minority nodes
can enter election but they can’t win it. Furthermore, the majority nodes will either not win
election or they will need to immediately step down upon winning election. This will continue to
happen until the system converges to a term. This is a useful case to study as it can be
observed not only in actual network partitions but also when the system attempts to add a new
replica.

The question here is: What is the expected number of elections the system will go through
before stabilizing upon reconnection after a prolonged network partition in which the
minority partition was left without a leader?

[2] State upon reconnection
We are now ready to describe the state of the system upon reconnection. Shortly after
reconnection when the majority leader has stepped down, the state of the system can be
described as below: 

1. Minority nodes have a term . These nodes have a high term but can’t win elections.

Δ(n, m) n
m

T′

2. Dethroned majority leader also has a term as it must have had its term updated before
stepping down.

3. Rest of majority nodes with a term .

[3] Formulation
Let us now define three types of nodes.

1. Type-1 nodes are minority nodes. These have a high term but can’t win elections.

2. Type-2 nodes are those majority nodes that have caught up with the minority’s term. If

these trigger election, they will win and the system will be stabilized. Note that in the state
we described above, the dethroned majority leader is a Type-2 node. It can enter election
and win it to stabilize the system.

3. Type-3 nodes are majority nodes that lag behind in term. In the state described above, all
majority nodes except their dethroned leader are Type-3 nodes. They can enter elections
and may even win but they will be made to step down soon after. Overall, the system
doesn’t get stabilized.

The state of the system can be written as where denotes the number of type-2
nodes, denotes the total number of nodes in majority partition, and denotes the total
number of nodes in the minority partition. Overall, if denotes the number of nodes of type ,
then we can say:

Note: At this point we note that the state of the system soon after reconnection as described in
the section [2] can be denoted as using the notation that we have just defined.

[4] System Evolution
Let us consider how the system evolves when an election happens.

1. If a type-1 node enters election, it loses the election. But it converts all majority nodes to
type-2.

	 	 	 	  

2. If a type-2 majority node with a term enters election, it will win it. The system will
stabilize. Let us denote this stable state as .

	 	 	 	  

3. If a type-3 majority node enters election, it will get converted to a type-2 node. (Note that it
may win election, but it will be made to step down quickly and the system can’t be
considered stable yet.)

	 	 	 	

We have now defined the evolution of system when an election happens. Now we need to
define its evolution in time. For this we need to consider when an election happens. Clearly,
every node uses a random timeout to trigger an election. Furthermore, we can assume that the
mean of these timeouts is approximately the same although the values themselves are picked
at random. This key property allows us to model occurrence of elections in each node as a
Poisson Process with a rate .

T′

T ≪ T′

S(i, n, m) i
n m

Nj j

i = N2
n = N2 + N3

m = N1

S(1,n, m)

S(i, n, m) type-1 election S(n, n, m)

T′
ϕ

S(i, n, m) type-2 election ϕ

S(i, n, m) type-3 election S(i + 1,n, m)

λ

With some work, it can be shown that independent election poisson processes running on
different nodes can be aggregated to form a compound process with a rate where

 is the total number of nodes. While doing so, we assume that elections are
instantaneous and therefore don’t overlap.

Let be an event in this compound process, the probability that it belongs to a specific

process is . Therefore, if there are nodes of the type and let denote the set of events

due to processes corresponding to these nodes, we can write: 

[5] Solution: Expected number of elections to reach stable state
The problem we are trying to answer can now be defined more formally.

Let denote the expected number of elections required for system to translate from
state to stable state . Then, given a partition , we are interested in
calculating .

We can now write the following recurrence relation based on the state transitions described in
section [4].

	

To complete this recurrence relation, we need to calculate the termination case of
when the entire majority has turned into type-2. This can be solved as follows, let

 then:

Solving we get:

Substituting in expression for , we get the solution:

[6] Result: the case of nearly equal partitions:
When the partitions are of nearly the same size, we observe that the maximum expected
number of elections that can be observed is bounded and is given by:

Nλ
N = n + m

E
1
N

Nj j Sj

P(E ∈ Sj) =
Nj

N

E(i, n, m)
S(i, n, m) ϕ Δ(n, m)

E(1,n, m)

E(i, n, m) =
n − i
n + m

(1 + E(i + 1,n, m)) +
m

n + m
(1 + E(n, n, m)) +

i
n + m

(1)

= 1 +
n − i
n + m

E(i + 1,n, m) +
m

n + m
E(n, n, m)

E(n, n, m)

X = E(n, n, m)

X =
n

n + m
(1) +

m
n + m

(1 + X)

E(n, n, m) = X =
n + m

n

E(i, n, m)

E(i, n, m) =
1 + m

n + n − i
n + m E(i + 1,n, m), i ≠ n

n + m
n , i = n

Δ(n, n − 1)

lim
n→∞

E(1,n, n − 1) = 4

Furthermore, for the particular case that we simulated and discussed during the presentation
with nodes was and:

[7] Result: the case of small partitions:
This case is much more problematic than the previous one. First of all we observe that the
expected number of elections grow unbounded with increase in .

The following plot shows the dramatic increase in election

This result shows that a single follower upon reconnection after a prolonged partition can
cause significant churn in the system. For instance, a system with 50 nodes can expect to
undergo 8 elections before stabilizing!

We believe that such a case is likely to be much more common and can even happen when a
new node is being added i.e. when there was no real partition.

[8] The Fix: Pre-Voting Phase
A fix for these problems which seems to be widely used across implementations while not
being very actively discussed is to have nodes check (pre-voting phase) if they can connect to
a majority number of nodes before going for election. Having such a check would prevent
minority partition nodes from entering into elections repeatedly during partition. This implies a
smooth and graceful reconnection without additional elections at the end of partition.

[9] Conclusion
Our model and analysis suggests that network partitions are much worse than what one might
expect. Pre-voting phase is a critical component of Raft and should not be skipped while
implementing.

N = 5 Δ(3,2)

E(1,3,2) = 2.46

Δ(n,1)

n
lim
n→∞

E(1,n,1) → ∞

